Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
BMC Med Res Methodol ; 23(1): 120, 2023 05 19.
Article in English | MEDLINE | ID: covidwho-2324512

ABSTRACT

BACKGROUND: A considerable amount of various types of data have been collected during the COVID-19 pandemic, the analysis and understanding of which have been indispensable for curbing the spread of the disease. As the pandemic moves to an endemic state, the data collected during the pandemic will continue to be rich sources for further studying and understanding the impacts of the pandemic on various aspects of our society. On the other hand, naïve release and sharing of the information can be associated with serious privacy concerns. METHODS: We use three common but distinct data types collected during the pandemic (case surveillance tabular data, case location data, and contact tracing networks) to illustrate the publication and sharing of granular information and individual-level pandemic data in a privacy-preserving manner. We leverage and build upon the concept of differential privacy to generate and release privacy-preserving data for each data type. We investigate the inferential utility of privacy-preserving information through simulation studies at different levels of privacy guarantees and demonstrate the approaches in real-life data. All the approaches employed in the study are straightforward to apply. RESULTS: The empirical studies in all three data cases suggest that privacy-preserving results based on the differentially privately sanitized data can be similar to the original results at a reasonably small privacy loss ([Formula: see text]). Statistical inferences based on sanitized data using the multiple synthesis technique also appear valid, with nominal coverage of 95% confidence intervals when there is no noticeable bias in point estimation. When [Formula: see text] and the sample size is not large enough, some privacy-preserving results are subject to bias, partially due to the bounding applied to sanitized data as a post-processing step to satisfy practical data constraints. CONCLUSIONS: Our study generates statistical evidence on the practical feasibility of sharing pandemic data with privacy guarantees and on how to balance the statistical utility of released information during this process.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Privacy , Pandemics , Computer Simulation , Contact Tracing/methods
2.
Electronics ; 12(4):917, 2023.
Article in English | ProQuest Central | ID: covidwho-2266440

ABSTRACT

With the widespread use of mobile devices, location-based services (LBSs), which provide useful services adjusted to users' locations, have become indispensable to our daily lives. However, along with several benefits, LBSs also create problems for users because to use LBSs, users are required to disclose their sensitive location information to the service providers. Hence, several studies have focused on protecting the location privacy of individual users when using LBSs. Geo-indistinguishability (Geo-I), which is based on the well-known differential privacy, has recently emerged as a de-facto privacy definition for the protection of location data in LBSs. However, LBS providers require aggregate statistics, such as user density distribution, for the purpose of improving their service quality, and deriving them accurately from the location dataset received from users is difficult owing to the data perturbation of Geo-I. Thus, in this study, we investigated two different approaches, the expectation-maximization (EM) algorithm and the deep learning based approaches, with the aim of precisely computing the density distribution of LBS users while preserving the privacy of location datasets. The evaluation results show that the deep learning approach significantly outperforms other alternatives at all privacy protection levels. Furthermore, when a low level of privacy protection is sufficient, the approach based on the EM algorithm shows performance results similar to those of the deep learning solution. Thus, it can be used instead of a deep learning approach, particularly when training datasets are not available.

3.
IEEE Internet of Things Journal ; 2022.
Article in English | Scopus | ID: covidwho-1759122

ABSTRACT

Preventing COVID-19 disease from spreading in communities will require proactive and effective healthcare resources allocations, such as vaccinations. A fine-grained COVID-19 vulnerability map will be essential to detect the high-risk communities and guild the effective vaccine policy. A mobile-crowdsourcing-based self-reporting approach is a promising solution. However, an accurate mobile-crowdsourcing-based map construction requests participants to report their actual locations, raising serious privacy concerns. To address this issue, we propose a novel approach to effectively construct a reliable community-level COVID-19 vulnerability map based on mobile crowdsourced COVID-19 self-reports without compromising participants’location privacy. We design a geo-perturbation scheme where participants can locally obfuscate their locations with the geo-indistinguishability guarantee to protect their location privacy against any adversaries’prior knowledge. To minimize the data utility loss caused by location perturbation, we first design an unbiased vulnerability estimator and formulate the location perturbation probability generation into a convex optimization. Its objective is to minimize the estimation error of the direct vulnerability estimator under the constraints of geo-indistinguishability. Given the perturbed locations, we integrate the perturbation probabilities with the spatial smoothing method to obtain reliable community-level vulnerability estimations that are robust to a small-sampling-size problem incurred by location perturbation. Considering the fast-spreading nature of coronavirus, we integrate the vulnerability estimates into the modified susceptible-infected-removed (SIR) model with vaccination for building a future trend map. It helps to provide a guideline for vaccine allocation when supply is limited. Extensive simulations based on real-world data demonstrate the proposed scheme superiority over the peer designs satisfying geo-indistinguishability in terms of estimation accuracy and reliability. IEEE

SELECTION OF CITATIONS
SEARCH DETAIL